일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 정보처리기사기출
- AI
- Django
- 리눅스
- 정보처리기사실기
- 리눅스자격증
- C
- SW
- Java
- 정처기기출
- 코딩
- IT자격증
- python
- 자격증
- Linux
- 리눅스마스터2급2차
- 기사자격증
- 공부블로그
- 리눅스마스터2급
- 정처기실기
- 장고
- 프로그래밍
- IT
- 정보처리기사
- 웹개발
- 머신러닝
- 정처기
- 리눅스마스터
- 리눅스활용
- 리눅스명령어
- Today
- Total
목록AI/Machine Learning (2)
Tech Trail

Ensemble (앙상블): 여러 개의 분류기를 결합하여 보다 정확한 예측을 얻는 머신러닝 기법입니다. 이를 통해 약한 모델을 조합하여 높은 예측 정확도를 달성할 수 있으며, 적절한 Hyperparameter 튜닝이 필요합니다. Ensemble 기법 Boosting: 이전 학습에 대하여 잘못 예측된 데이터에 가중치를 부여하여 오차를 보완하는 방식으로, 대표 모델로 XGBoost, LightGBM이 있습니다. 순차적인 학습을 통해 오차를 보완하지만 학습 시간이 길 수 있습니다. Stacking: 여러 모델이 예측한 결과 데이터를 기반으로 최종 예측을 수행하는 방식입니다. 이를 통해 성능은 향상될 수 있지만 과대적합을 유발할 수 있습니다. Weighted Blending: 각 모델의 예측값에 가중치를 곱..

머신러닝 주요 알고리즘 scikit-learn: 가장 인기 있는 머신러닝 패키지로, 다양한 머신러닝 알고리즘이 내장되어 있습니다. 머신러닝 주요 알고리즘 분류 회귀 (Regression) 예시: 선형 회귀 (Linear Regression) 코드 예시 from sklearn.linear_model import LinearRegression model = LinearRegression() 분류 (Classification) 예시: 로지스틱 회귀 (Logistic Regression) 코드 예시 from sklearn.linear_model import LogisticRegression model = LogisticRegression() 회귀와 분류 모두 가능 결정 트리 (Decision Tr..